General bearing capacity equation

Modification factors for General bearing capacity equation (based on Vesic, 1975)

Factor	S_c		S_q	S_{γ}
Foundation shape, s		$S_{cs} = 1 + \frac{B'}{L'} \frac{N_q}{N_c}$	$S_{qs} = 1 + \frac{B'}{L'} \tan \phi$	$S_{ys} = 1 - 0.4 \frac{B'}{L'}$
Inclined loading, $i^{[1]}$	$\phi = 0$,	$S_{ci} = 1 - \frac{mH}{B'L'cN_c}$	G (. H)"	G (1 H) ^{m+1}
	$\phi > 0$,	$S_{ci} = S_{qi} - \frac{1 - S_{qi}}{N_c \tan \phi}$	$S_{ql} = \left(1 - \frac{H}{V + B'L'c\cot\phi}\right)^{m}$	$S_{n} = \left(1 - \frac{1}{V + B'L'c\cot\phi}\right)$
Foundation depth, $d^{[2]}$	$\phi = 0$,	$S_{cd} = 1 + 0.4k$		
	$\phi > 0$,	$S_{cd} = S_{qd} - \frac{1 - S_{qd}}{N_{\varepsilon} \tan \phi}$	$S_{qd} = 1 + 2 \tan \phi \left(1 - \sin \phi\right)^2 k$	$S_{\gamma d} = 1$
Surface slope, $\beta^{[3]}$		$S_{c\beta} = 1 - \frac{2\beta}{\pi + 2}$	$S_{\alpha\beta} = (1 - \tan \beta)^2$	$S_{n\beta} = (1 - \tan \beta)^{2} $ [4]
	$\phi > 0$,	$S_{c\beta} = S_{q\beta} - \frac{1 - S_{q\beta}}{N_c \tan \phi}$	- up (- tim p)	-m (- 1111p)
Base inclination, $\delta^{[s]}$		$S_{c\delta} = 1 - \frac{2\delta}{\pi + 2}$	$S = (1 S \tan A)^2$	S - (1 Ston 4) ²
	$\phi > 0$	$S_{c\delta} = S_{q\delta} - \frac{1 - S_{q\delta}}{N_c \tan \phi}$	$S_{q\delta} = (1 - \delta \tan \phi)^2$	$S_{pS} = (1 - \delta \tan \phi)^2$

- [1] V = vertical force; H = horizontal force; m depends on direction of inclined loading θ relative to long side θ the foundation: If force inclined in θ direction ($\theta = 90^{\circ}$) $m = m_B = (2+B/L)/(1+B/L)$, if inclined in θ direction ($\theta = 0^{\circ}$) $m = m_L = (2+L/B)/(1+L/B)$, and if inclined at angle θ to θ direction $\theta = m_L \cos^2\theta + m_B \sin^2\theta$.
- [2] k = D/B if $D/B \le 1$; $k = \tan^{-1}(D/B)$ if D/B > 1.
- [3] β = inclination below horizontal of the ground surface away from the edge of the foundation (see Figure 10.4 for $\beta < \pi/4$; β in radians.
- [4] For sloping ground case where $\phi = 0$ $N_z = -2\sin\beta$ must be used in bearing capacity equation.
- [5] δ = inclination from the horizontal of the underside of the foundation (see Figure 10.4); for $\delta < \pi/4$; δ in radian

Bearing capacity factors N_c and N_q from Meyerhof (1963) and N_γ from Davis and Booker (1971)

Values recommended by CFEM

φ°	N_c	$N_{_q}$	$N_{_{\!$	$N_{_{\gamma}}$ smooth
0	5.1	1	0	0
10	8.3	2.5	0.6	0.3
15	11	3.9	1.3	0.8
20	15	6.4	3.0	1.7
21	16	7.1	3.6	2.0
22	17	7.8	4.2	2.4
23	18	8.7	5.0	2.8
24	19	9.6	5.9	3.3
25	21	11	7.0	3.8
26	22	12	8.2	4.5
27 .	24	13	9.7	5.3
28	26	15	11	6.2
29	28.	16	14	7.3
30	30	18	16	8.6
31	33	21	19	10
32	35	23	22	12
33	39	26	27	14
34	42	29	31	17
35	46	33	37	19
36	51	38	44	23
37	56	43	52	27
38	61	49	61	32
39	68	56	73	37
40	75	64	86	44